Search results for "Incidence geometry"

showing 3 items of 3 documents

On 2-(n^2,2n,2n-1) designs with three intersection numbers

2007

The simple incidence structure $${\mathcal{D}(\mathcal{A},2)}$$ , formed by the points and the unordered pairs of distinct parallel lines of a finite affine plane $${\mathcal{A}=(\mathcal{P}, \mathcal{L})}$$ of order n > 4, is a 2 --- (n 2,2n,2n---1) design with intersection numbers 0,4,n. In this paper, we show that the converse is true, when n ? 5 is an odd integer.

Discrete mathematicsApplied Mathematics2-designsOrder (ring theory)ParallelComputer Science ApplicationsCombinatoricsIntegerIntersectionIncidence structureSimple (abstract algebra)Affine plane (incidence geometry)Settore MAT/03 - GeometriaMathematics
researchProduct

INCIDENCE CONSTRAINTS: A COMBINATORIAL APPROACH

2006

The simplest geometric constraints are incidences between points and lines in the projective plane. This problem is universal, in the sense that all algebraic systems reduce to such geometric constraints. Detecting incidence dependences between these geometric constraints is NP-complete. New methods to prove incidence theorems are proposed, which use strictly no computer algebra but only combinatorial arguments.

Discrete mathematicsIncidence geometryApplied MathematicsCombinatorial proofSymbolic computationTheoretical Computer ScienceAlgebraComputational MathematicsComputational Theory and MathematicsGeometry and TopologyProjective planeAlgebraic numberIncidence (geometry)MathematicsProjective geometryInternational Journal of Computational Geometry & Applications
researchProduct

Spaces of typen on partially ordered sets

1989

This paper contains a generalized approach to incidence geometry on partially ordered sets. A difference to the usual geometrical concepts is that points may have different size. Our main result states that a large class of spaces allows lattice theoretic characterizations. Especially, a generalized version of the Veblen-Young axiom of projective geometry has a lattice theoretic equivalent, called then-generation property (which is a generalization of the ‘Verbindungssatz’). Modularity and distributivity of a lattice of subspaces are reflected in the underlying space. Finally we give specializations and examples.

CombinatoricsDifferential geometryIncidence geometryDistributivityGeometry and TopologyAlgebraic geometryPartially ordered setLattice (discrete subgroup)Space (mathematics)MathematicsProjective geometryGeometriae Dedicata
researchProduct